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Change in stabilizability of a mechanical system under the influence of a nonholonomic 
constraint is studied, and conditions given, under which the imposition of such a constraint 
leads to impairment of the stabilizability of the system. Some cases are shown in which 
the imposition of a nonholonomic constraint, however, improves the stability of the sys- 
tem. 

1, For the sake of completeness, we shall begin by quoting some well-known facts 
from the theory of stabilization of nonholonomic systems [l - 41. 

Let a mechanical system be given whose position is defined in the terms of generalized 
coordinates Q,..., qn+l and let the motion of the system be subject to a nonholonomic 

constraint whose equation can be written in the form 

9,+t = 5 @* (Qt* - - * , Q,+J Q, (1.1) 

i=l 

We assume that the system in question has a one-parameter manifold Q of unstable 
equilibrium positions p] 

!?{ = %(P)t & d q c B (a, B = conat), (I = i)...) n + 1) (1.2) 

We shall consider the problem [l and 31 of determining a control u(ql,..., qn+lr 

$1 ,...,G,,+J, which would cause the equilibrium positions (1.2) to become asymptotically 
stable. Following the accepted procedure, we shall start by setting up the equations of 
perturbed motion with the help of new coordinates So,..., I, and E given by 

9 = Qi- q*(q) (t = f,..., n + i) 

4 = *n+, - i e$ (91 (q)* . . * t qn+* (d) .vi 
f=l 

where Of denote the coefficients appearing in Eq. (1.1) ot the nonholonomic constraint. 
Further, using the equations of motion of a nonholonomic system [5 and 61 in the form 
due to Appell or Lagrange, we obtain the equations of perturbed motion in the form [4 
and 71 1 = A(q) a + &?)u + c(q)& + ‘ps(q, E, s, u) 

i = r&l E, 2) @!&I, E, 9) = 9) (1.3) 

Here z = (zs,..., z2,) denotes a 2n- dimensional vector whose components are given 

by sz+r = si, a?+ = y’ (i = I,..., n); A(q) is a 2n x Pn-matrix, while b(q), c(q) and 
‘pl (q, 6, z, u) are 2n-dimensional vectors. We shall assume that the elements of the 

matrix A, vectors b, c and (pI and of the functions ‘pz are all analytic in,q, E, z1 and u 
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and w-the expansions&v1 and.@ begin with the terms which contain second order 
infinitesimals in g, rt and U. 

From (1.3) it follows that we are dealing with the critical case of a single zero root 
D], therefore we conclude that the control cannot stabilize the equilibrium positions 

(1.2) up to the asymptotic stability in the Liapunov sense. Consequently, we adopt the 

following definition. 
Definition 1. 1 . We shall call the manifold of equilibrium positions (1.2) of a 

nonholonomic system asymptotically stable, if any of these states is stable in the Liapu- 
nov sense and, if for any perturbed motion q&*) adjacent to any of these states the con- 
dition ,‘. Q(t) = gt(g+ + a) (1 = I,..., n + i) (a Q q+ < B) 

holds. Here e denotes a sufficiently small number, provided that the initial perturbations 

Qi - q&+) (1 = I,..., I( + i) are themselves small. In this connection we shall next 
consider a problem of stabilizing the manifold of equilibrium states (1.2) of a nonholo- 
nomic system. 

Problem 1.1. To find a control u = I( (q,r) such, that the manifold of the equi- 
librium positions (1.2) becomes asymptotically stable in the sense of Definition 1.1. 

The following theorem then holds [4]. 
Theorem 1.1. If the linear system 

d = A(q)2 + b(q)u (1.4) 

becomes asymptotically stable in the Liapunov sense under the action of u for any q 

belonging to the segment [a, PI, then the Problem 1.1 has a solution, i.e. the system 
(1.3) can be stabilized in the sense of the Definition 1.1 and the stabilizing control u 

has the form 
u (q, 2) = 5 Pi (a) z* 

L-1 
where pi (q) are analytic in q. 

2. We shali now consider a problem of stabilizing a system consisting of two heavy 
material points M1 and M2 connected with a thin, weightless rod in such a manner. that 
M, is fixed rigidly to the rod while M2 is free to slide along the rod without friction. 

Let the points M1 and Ms be situated on the surface of two ellipsoids. Then the system 

will have an unstable position of equilibrium corresponding to the case when both points, 
Mx and MS, are positioned at the peaks of these ellipsoids. We shall assume that the set 
of points M, and M. is subject to internal attractive (or repulsive) forces and as general- 

ized coordinates we shall use ( zl, y1 ) for Ml and ( 4, Ys ) for Mf, both belonging to the 
Cartesian coordinate system whose a axis is directed upwards in the direction which is 

vertical at the given part of the Earth globe. Let the kinetic and potential energy of the 

system be given by 
T = l/a (r1” + yl” + .zea + ~2”) + TI (I, Y, 5.9 Y’) 

n=--/2(*/2(~~+d~--i)2+2(Yl--l+~~2+ m’ + sz2Y2 + 6Ya”lf II1 (St Y) 

We assume that the functions ~~ and n, can be expanded into series in some neigh- 

borhood of the equilibrium point 21=1,y,=zr=yz=v (2.1) 

and, that the expansion will begin with the terms of order not lower than the third in 
9, ya,q’and yi’. Then the equations of motion of the system Ml and MZ will be given, 

in the linear approximation, by 
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21” 3 ‘/a21 - ‘/,a, - u, 21” = - ‘/a11 + ‘/Ma, 2;’ 3 28 +3za + u, rr” = 3X? + 64 

where 4 denote the deviations from the equilibrium position (2.1). i.e. 
(2.2) 

Constructing the matrix As and the vector 6r 

_:~_=;;:;;;~=a!s’:s=/; 

we find, that the vectors b,, ~~4, ~fb, and A,%r are linearly independent, which im- 
plies that the system (2.2) can be stabilized 
Cl, 3 and 81 by the control u to the asymp- 
totic stability in the Liapunov sence. This 

fact could, however, also be deduced from 
the general considerations of stabilization of 
the holonomic systems 181, since ‘in the present 
case the straight line connecting the points 

M, and Ms in their position of equilibrium 
does not coincide with any of the principal 

Fig. 1 directions of the potential energy surfaces 
II,(‘) = const (i = i;2) of the points Mi and 

MO,; respectively. 
We note that the imposition of a nonholonomic constraint of the form (1.1) on the 

system (2.2) can, by the theorem 1.1, only impair its stabilizability. 
Let us now rotate the ellipse II,(‘) = const by 45’ clockwise. Then the line connect 

ing the points Ml and Ma in their equilibrium position, will coincide with the principal 
axis of the ellipse II&‘) = const (see Fig. 1) and the resulting holonomic system will no 

longer be stabilizable. Indeed, we shall then have 

II= --‘/a [(zi- i)* + 4~1'+ a'+ 6syz + 6~21 + & (2, Y) (2.3) 

The set of points M1 and MI will, obviously, still have the position of equilibrium(2.1). 
Its motion in the neighborhood of this position will now be defined by the following first 
approximation equations 

21 ** = z r-o, za ‘. = 4zr, 2;. = zD + 31, + u, zs” = 3~s + 64 (2.4) 

As expected [l and 83, the system (2.4) cannot be stabilzed by the force u directed 
along the rod. 

We shall show that the stabilizability of the system (2.4) carrbe improved by imposing 
a nonholonomic constraint on it. To do this, we shall fit the point Mr with a wheel pos- 

sessing a sharp edge, sp that the velocity of Mi is, at all times, directed along the rod. 
In other words, we shall impose on the system Mi, and MI a nonholonomic constraint of 
the form (Y!a--y,)q'-(II-q) y1'==0 (2.5) 

Since the system (2.4) is assumed to be the initial one, we suppose, as before, that the 
potential energy of the system is given by (2.3). After the necessary computations c2 and 
73 we find, that the set of points ~fr and AT, has a one-parameter manifold Q of the posi- 
tions of equilibrium 
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=1=qt yl = f ‘I* vt (i - d (0 < q < i), xl = yg - 0 (2.6) 
The value q = i corresponds. to the equilibrium position (2.1) in which we are inter- 

ested. When q = it the system (1.4) characterizing the stabilizability of a nonholono- 
mic system has the form ** =z ‘1:. 1 - u (21 = 2, - i) 

Y = sa + 328 + a (1s = 9) 
za” = 3zr.+ 6~ 

(2.7) 
(2, = Yl) 

System (2.7) becomes, under the action of I( , asymptotically stable in the Liapunov 
sence. This follows from the fact that the vectors bs, Ash and A&, where 

Aa= 

are linearly independent. Consequently the system (1.4) can also be stabilized when 
0 < a < q ( i. Theorem 1.1 therefore, implies that the nonstabilizable holonomic sys- 
tern ni, and Ms can now be stabilized in the sense of the definition 1.1 provided that 
the nonholonomic constraint (2.5) is imposed on it. 

Since the example was chosen only to illustrate the method, we used the simplest 
model of a mechanical system consisting of two points. The argument however, can 
easily be extended to the general case. 

Let the holonomic mechanical system be controlled by the force U, whose direction 
does not coincide with any if the directions of the principal normal coordinates. Such 

a system can be stabilized asymptotically in the Liapunov’s sense [8]. Consequently, a 
nonholonomic constraint can, by Theorem 1.1, impair its stabilizability. Conversely, if 
the direction of the controlling force u coincides with any of the principal normal coor- 
dinates, then the system cannot be stabilzed. However, a nonholonomic constraint of the 

type (1.1) imposed on this system, restricts its displacements in the directions different 
from that of the normal coordinate coincident with II , and the system may then become 
asymptotically stable in the sense of the definition 1.1. 
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